
Helium 2.0 API Reference 
Neil Klingensmith Control Engineering Solutions 2008-09-01 

 

Revision Log 

Date Action Initials 

2008-09-01 Created NAK 

   

   

  



 

 

 
c o n t r o l  e n g i n e e r i n g  s o l u t i o n s  

 

Page 2 

Table of Contents 
Thread Management ..................................................................................................................................... 3 

threadCreate ............................................................................................................................................. 3 

threadDestroy ........................................................................................................................................... 3 

sleep .......................................................................................................................................................... 3 

Dynamic Memory Allocation ......................................................................................................................... 4 

heapAlloc ................................................................................................................................................... 4 

heapFree.................................................................................................................................................... 4 

Mutexes ......................................................................................................................................................... 4 

mutexCreate .............................................................................................................................................. 4 

mutexTake ................................................................................................................................................. 4 

mutexRelease ............................................................................................................................................ 5 

FIFO Buffers ................................................................................................................................................... 5 

fifoCreate ................................................................................................................................................... 5 

fifoRegister ................................................................................................................................................ 5 

fifoWrite .................................................................................................................................................... 6 

fifoRead ..................................................................................................................................................... 6 

 

  



 

 

 
c o n t r o l  e n g i n e e r i n g  s o l u t i o n s  

 

Page 3 

Thread Management 
Thread management functions are used to create and destroy threads in Helium. For more information 

on threads and thread scheduling, refer to the document titled Helium 2 Scheduler. 

threadCreate 

THREAD *threadCreate( short  priority, 

                      void (*threadPtr)(), 

                      int   *stack, 

                      int    stackSize, 

                      void  *data ) 

Creates a thread consisting of a block of code and a stack space. The block of code is equivalent to a 

main function in a normal C program (although it should be given a different name). The function used 

to create the thread will execute and return to the operating system when finished, just like a standard 

main function. A stack space should be allocated for the thread using an array. 

Table 1: Parameter description for threadCreate. 

short priority Priority the thread should be run at. Threads with higher priorities will be 

given the option to run before threads with lower priorities. The highest 

priority a thread can have is 0, and the lowest is 65535. 

void (*threadPtr)() Pointer to the code section for the thread.  

int *stack Pointer to the lowest address in the stack section. This is the base address 

of the memory block used for the stack. 

int stackSize Length (in bytes) of the stack. The initial stack pointer will be calculated by 

adding the base address of the stack section to the stack size. 

void *data Optional 16-bit integer that can be passed to the new thread. This may be 

a mutex or FIFO handle or an application-specific data structure. 

 

threadCreate is an O(n) operation, where n is the number of threads in the ready list. 

threadDestroy 

void threadDestroy( THREAD *t ) 

Destroys a thread. The thread is removed from the list(s) it is linked into, and any pool memory that is 

still allocated to it is freed. Finally, the scheduler is invoked, and the next thread is executed. A thread 

may implicitly call this function to destroy itself by returning to the operating system. 

threadDestroy is an O(1) operation. 

sleep 

void sleep( unsigned short numTicks ) 



 

 

 
c o n t r o l  e n g i n e e r i n g  s o l u t i o n s  

 

Page 4 

Causes the current thread to wait for a specified number of clock ticks. While the thread is waiting, 

other threads will be given control of the CPU. 

Dynamic Memory Allocation 

heapAlloc 

void *heapAlloc(int size) 

Allocates a block of memory from the memory pool of length size and returns a pointer to the lowest 

address in the memory block. In the standard Helium distribution, blocks of 8, 16, 32, and 64 bytes may 

be allocated. Requests for blocks of memory that do not have exactly these sizes will cause the memory 

allocator to return a pointer to a block of the next largest size. For example, if a block of 25 bytes is 

requested, the memory allocator will return a pointer to a 32-byte block. If a memory block greater than 

64 bytes is requested, the memory allocator will return -1. 

heapAlloc is an O(1) operation. 

heapFree 

void heapFree(void *b) 

Frees a block of memory that was allocated with heapAlloc.  

heapFree is an O(n) operation where n is the total number of memory blocks available to the system. 

Mutexes 

mutexCreate 

MUTEX *mutexCreate() 

Creates a mutex and returns a handle to the mutex. All subsequent accesses to the mutex will be 

referenced using the mutex handle returned by mutexCreate. 

mutexCreate is an O(1) operation. 

mutexTake 

void mutexTake(MUTEX *m) 

Request access to mutex m. If another thread is already using that mutex, the requesting thread will 

block until the other thread has finished using it. If the thread that is currently using the mutex has a 



 

 

 
c o n t r o l  e n g i n e e r i n g  s o l u t i o n s  

 

Page 5 

lower priority than the requesting thread, the first thread will be promoted to the priority of the 

requesting thread until it has finished using the mutex. 

mutexTake is an O(1) operation. 

mutexRelease 

int mutexRelease(MUTEX *m) 

Release the mutex m. The next thread in the mutex waiting list will be added to the ready list. The 

current thread will be allowed to continue executing until the next clock tick, at which time the 

scheduler will choose which thread to run next. 

mutexRelease is an O(1) operation. 

FIFO Buffers 

fifoCreate 

FIFO *fifoCreate(int mode, int numElements)  

Creates a FIFO buffer and returns a handle to that buffer. Allows the calling thread to access that buffer 

as either the reading thread or the writing thread by requesting the appropriate mode. Also, the calling 

thread may place a limit on the number of data elements the FIFO may hold at any given time. This is 

used to stop the FIFO from using all available pool memory if the rate of data being written to the FIFO 

exceeds the rate of data being read from the FIFO. This feature can be overridden by passing NULL as 

the second parameter. 

fifoCreate is an O(1) operation. 

Table 2: Parameter description for fifoCreate. 

int mode Indicates that the thread that creates the FIFO will either read from or write to 

the FIFO. Allowable modes are FIFO_READ_MODE or FIFO_WRITE_MODE. 

int numElements Maximum number of data elements the FIFO may contain. Passing NULL for 

this parameter puts no limit on the number of elements, making it possible for 

the FIFO to use as much pool memory as it needs. 

 

fifoRegister 

int fifoRegister( FIFO *f, THREAD *t, int mode )  

Registers a thread as either a reader or a writer to the specified FIFO. As with fifoCreate, the mode 

may be either FIFO_READ_MODE or FIFO_WRITE_MODE. Both fifoCreate and fifoRegister should be 

called before attempting to access data in a FIFO.  



 

 

 
c o n t r o l  e n g i n e e r i n g  s o l u t i o n s  

 

Page 6 

fifoRegister is an O(1) operation. 

fifoWrite 

int fifoWrite(FIFO *f, int data) 

Writes a two-byte value to the specified FIFO buffer. The thread that calls fifoWrite must be 

registered as the writing thread for the FIFO for this call to succeed. A thread may register itself for write 

access using either the fifoRegister or fifoCreate system calls (see above). The return value 

indicates success or failure mode as outlined in Table 1 below. 

Table 3: Return values from fifoWrite. 

Return Value from fifoWrite Meaning 

0 Operation successful. 

-1 currThread is not registered as the FIFO’s writer. 

-2 No memory is available to allocate a new FIFO data block. 

 

fifoRead 

int fifoRead( FIFO *f, int *data ) 

Reads a two-byte value from the specified FIFO buffer. The thread that calls fifoRead must be 

registered as the reading thread for the FIFO for this call to succeed. A thread may register itself for read 

access using fifoRegister or fifoCreate system calls (see above). 


