helluwmm

helium configuration utility readme v1.2



The Helium Configuration Wizard organizes the Helium source code distribution in an easy to use fashion. It creates
prototypes for all the tasks that the user code will need and generates boot code for the microcontroller that initializes
all of the user’s tasks on startup using the TaskCreate API function. For an explanation of a task’s structure in the

Helium RTOS, please refer to the Helium README file available in the Documentation section of the website,
http://helium.sourceforge.net.

Configuring Helium

When the configuration wizard is first opened, it will display a welcome screen like the one below. Click (Next >>) to
continue.

Helium Distribution Generator b_q

Helium Distribution Wizard

Thark you for downloading Helium v1.2, This wizard will
allow you to generate a sourcecode distribution specific to
your application, Please click Mext to continue,

=< Back. Mext ==




The first step allows the user to select his CPU type. Click (Next >>) to continue.

X

Helium Distribution Generator

Step 1: CPU Type

Choose between the two most common derivatives, Minor
instruction set differences between these twio CPUs make
sorme source code incompatible,

¥ HCSO0S

" HCOE

" avR

=< Back Mext ==

The second step allows the user to specify a function that will initialize peripheral devices on his MCU. If this option is
enabled, Helium will simply call the function specified in Step 2 on bootup. The user is responsible for writing that
function. The user may also choose not to use this feature and place all init code inside Helium’s main function.



Helium Distribution Generator

%)

Step 2: Peripheral Initialization

When the systerm starts up, Helium will call a function that
initializes any on-chip peripherals that will be needed. The
name of that function can be specified here.

MCLI_init
woid M _jnik) ;

W Callinitialization rooting in book code,

=< Back Mext ==

Step three allows the user to set up a task hierarchy for Helium. For each task, the configuration wizard will generate a C
file with an empty function body, create a stack for it, and initialize the task on bootup. A task’s stack size should be at
least 20 bytes on an HC(S)08 CPU and at least 50 bytes on an AVR. Those sizes are used by the Helium scheduler. If the
task declares any local variables or calls any functions, the stack sizes will need to be increased.

In the figure below, the user has created three tasks: ¥00, bar, and an idle task. foo and bar are tasks that will
actually do work. Of course, both will block for some period of time during their execution, possibly waiting for data
from a peripheral device or waiting for the other task to complete a calculation. If both tasks are blocked at the same
time, the idle task will be scheduled. Without an idle task, Helium would not know what task to schedule when all other
tasks are blocked, and the operating system would crash. The idle task just needs to run in an infinite loop, so it can have
the minimum size stack for the CPU.

The idle task would not be necessary if the CPU was put to sleep when no task was ready to run. This scheme would save
power, but Helium does not currently support it.



Helium Distribution Generator

Step 3: Tasks

Type the names of the tasks that your implementation
weill run, Tasks are listed from highest priority on top
1o lowest priority on bothom,

Task Mame Stack Size
Fao 100

idle _‘::- bar 120
J idle 50
Stack Size: |50 ®

p Do |

<< Back | Mext =3

After the task list is populated, the wizard will save the source code. Click (Finish) and select a location for main.c. All
other source code files will be placed in the same directory as main.c.



%)

Helium Distribution Generator

Step 4: Save Files

Congradulations! You have finished the initialization
process, Press Finish and select a location o save the
source code files,

« < Back, Finish

After the source files are saved, they can be imported into a project in the IDE for the appropriate microcontroller. If an
MCU initialization routine was specified in Step 2, that routine will also have to be imported or written from scratch. The
Helium distribution should then compile with no errors.



